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The finite-Reynolds-number two-dimensional flow in a channel bounded by a porous
medium is studied numerically. The medium is modelled by aligned cylinders in a
square or staggered arrangement. Detailed results on the flow structure and slip
coefficient are reported. The hydrodynamic force and couple acting on the cylinder
layer bounding the porous medium are also evaluated as a function of the Reynolds
number. In particular, it is shown that, at finite Reynolds numbers, a lift force acts
on the bodies, which may be significant for the mobilization of bottom sediments.

1. Introduction
Flow along the surface bounding a porous medium occurs in a variety of natural and

engineering systems. Prime examples can be found in the environment: the bottom of
rivers, lakes and oceans, atmospheric boundary layers over a forest canopy, overland
flow of rain and irrigation waters and many others. A porous medium forms the
boundary of wider flow passages e.g. in a cracked porous medium, of interest in
situations as diverse as groundwater flow, oil extraction and geothermal engineering.
Technological instances of such flows are also abundant: filtering, solid-bed catalysts,
packed-bed heat exchangers and transpiration cooling to name a few.

Beavers & Joseph (1967) carried out experiments in an effectively two-dimensional
channel bounded by a porous medium at y = 0 and an impermeable wall at y =H

and introduced the notion of slip coefficient α defined by

dU

dy

∣∣∣∣
y=0+

=
α√
κ

(Ui − UD) (1.1)

where Ui is the ‘slip velocity’ at the interface y = 0, UD is the Darcy velocity and κ is
the permeability of the porous medium. The last two quantities are related by

−dp

dx
=

μ

κ
UD (1.2)

in which μ is the fluid viscosity, dp/dx the imposed pressure gradient, and the
flow is assumed to take place in the x-direction. This well-known relation is valid
in the low-Reynolds-number conditions characteristic of many porous media flows.
By independently inferring Ui , UD and κ from the measured flows in the porous
medium and the channel, Beavers & Joseph (1967) determined α finding that
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‘A slip-flow boundary condition with one experimentally determined parameter is not
inconsistent with the experimental data’; typical values were in the range α ∼ 0.1–4.0.

Sahraoui & Kaviany (1992) attempted to determine α numerically on a two-
dimensional model of a porous medium realized with an array of cylinders. In
their work the volume (area) fraction β occupied by the solids ranged between
20 % and 50 %, but the thickness of the clear-fluid region was only a few times
the cylinder radius, which caused their channel height to be comparable to the
roughness of the effective porous medium interface thus somewhat obscuring the
physical picture. An important aspect of their work is the inclusion of inertial effects,
which become important near the porous medium interface as the Reynolds number
increases.

The present work builds on that of Sahraoui & Kaviany: we use a similar two-
dimensional model consisting of cylinders arranged in a square or staggered pattern
and we investigate the details of the pressure-driven flow field at finite Reynolds
number. Our most interesting result is the identification of a lift force acting on
the bodies at the surface of the porous medium, which could prove of practical
significance, e.g. in providing the initial impetus under which sand grains or pebbles
become suspended in a flow.

In their study of fluid flow in a channel containing 300 cylinders, Choi & Joseph
(2001) also found a lift force on the particles. They started the simulation from rest
and allowed the particles to move finding that the bed inflates due to a ‘pumping of
liquid into [it] at the earliest times’. Ours is a steady-state simulation and there is no
exchange of fluid between the bed and the clear space above it, although the lift force
persists. This result suggests that the stress distribution over the particle surface is
able by itself to generate a lift force even without flow in and out of the bed.

The studies of Sahraoui & Kaviany and Choi & Joseph are among the very few
which deviate from the Stokes-flow assumption made by many authors, starting with
Larson & Higdon (1986, 1987) who studied the shear flow through semi-infinite
cylinder arrays using a boundary integral method. The most recent work of this type
is the paper by James & Davis (2001) who used a singularity method to find an
approximate solution for planar Couette and Poiseuille flow in a channel partially
filled by a cross-stream array of cylinders occupying a relatively small (less than 10 %)
area fraction. This work also contains an excellent review of previous studies.

A recent experimental study of the situation postulated in these theoretical works
has been carried out by Tachie, James & Currie (2003) in a Taylor–Couette-like
apparatus with a bank of two-dimensional cylinders of various cross-sections arranged
parallel to the surface of the rotating wall and therefore oriented across the flow.
They observed eddies in the fluid space near the outer cylinder rows which are
qualitatively similar to the ones described below in § 4. The Reynolds number in this
experiment was very small and no results with inertial effects were reported. Eddies
in the top layer of a model porous medium made with randomly arranged spheres
were also observed by Goharzadeh, Khalili & Jørgensen (2005) (see an enlargement
of their figure 4). The same group carried out similar experiments with the flow over a
‘brush-like’ cylinder arrangement (Tachie, James & Currie 2004; Agelinchaab, Tachie
& Ruth 2006), a situation rather different from the one considered here.

The related problem of flow in an infinite cylinder array has been tackled, among
others, by Sangani & Acrivos (1982), Sangani & Yao (1988) and Sangani & Behl
(1989). These studies were conducted in the Stokes-flow approximation. More recently
Koch & Ladd (1997) and Hill, Koch & Ladd (2001) investigated inertial effects at
moderate Reynolds number for cylinder and sphere arrangements.
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While, according to (1.1), the velocity undergoes a discontinuity at the porous
medium interface, other models lead to a continuous velocity profile. The most
widespread one, and historically the most important, is based on the Brinkman
(1947) equation which, again for two-dimensional flow in the x-direction, is

−dp

dx
=

μ

κ
U − d

dy

(
μeff

dU

dy

)
. (1.3)

In a uniform medium the y-derivatives vanish and U becomes the Darcy velocity
(1.2). In Brinkman’s original paper the effective viscosity was taken as the pure fluid
viscosity. Several authors have questioned this assumption and have attempted to
improve on it analytically (e.g. Adler, Mills & Quemada 1978; Koplik, Levine &
Zee 1983) and numerically (e.g. Martys, Bentz & Garboczi 1994). An illuminating
discussion of an extended version of the Brinkman model and its connection to the
slip coefficient has recently been given by Le Bars & Worster (2006), who retained
the assumption μeff = μ.

2. Slip conditions
The Beavers–Joseph condition (1.1) may be recast in terms of a partial slip condition

by writing

Ui = λ
dU

dy

∣∣∣∣
y=0+

, (2.1)

in which λ is the slip length. By comparing (1.1) to (2.1) we find the following
relationship between α and λ:

1

α
=

λ√
κ

(
1 − UD

Ui

)
. (2.2)

If the flow in the channel is approximated as a Poiseuille flow with slip at the wall,
one readily obtains, from (2.1),

λ =
2μUi

H (−dp/dx)
. (2.3)

It is useful to present the computational results in terms of characteristic scales.
For velocity, an obvious scale is provided by the mean velocity in Poiseuille flow, i.e.
the horizontal velocity averaged over the height H of the channel

Um =
H 2(−dp/dx)

12μ
. (2.4)

This velocity scale is much greater than the interfacial velocity Ui of (1.1). To estimate
the scale U∗ for this latter quantity we note that, usually, Ui � UD , and that the slip
coefficient is a number of order 1. Equation (1.1) then suggests that U∗ ∼

√
κdU/dy.

The velocity gradient can be estimated from the wall velocity gradient for parabolic
flow which is given by

dU

dy

∣∣∣∣
y=0+

=
H (−dp/dx)

2μ
(2.5)

irrespective of the magnitude of the wall slip. With this argument we are led to

U∗ =
H (−dp/dx)

√
κ

2μ
(2.6)
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as the characteristic scale of the interface velocity Ui . With UD = κ(−dp/dx)/μ, we
see that

UD

U∗
=

2
√

κ

H
(2.7)

so that the assumption UD � U∗ is consistent. The ratio of the two velocity scales is

U∗

Um

=
6
√

κ

H
, (2.8)

which is a small number as expected.
The two velocities Um and U∗ permit us to define two Reynolds numbers

ReH =
HUm

ν
, Re =

2aU∗

ν
, (2.9)

where a is the cylinder radius and ν the kinematic viscosity; ReH is useful to
characterize the flow in the channel while Re is relevant for the flow near the surface
of the porous medium. The ratio of these two Reynolds number is the small number
Re/ReH =12a

√
κ/H 2.

We will show results for the force and couple on the cylinders in the top layer.
For the former, an appropriate scale F∗ is the shear stress at the interface, τw �
μ dU/dy|y = 0+ multiplied by the particle diameter, although this scale does not
include the pressure contribution and might therefore somewhat underestimate the
force. For the couple, the appropriate scale L∗ is the scale for the force multiplied by
the particle radius a. Thus, we set

F∗ = −dp

dx
aH, L∗ = −dp

dx
a2H. (2.10)

For a given arrangement of the cylinders, the independent dimensionless parameters
of the calculation can taken to be

β,
H

a
,

a3(−dp/dx)

μν
, (2.11)

with β the volume (area) fraction of the solids. For a square array which, for
given β , uniquely determines the permeability κ (see (3.3) and (3.4)), this quantity
is related to the dimensionless particle spacing by L/a =

√
π/β . The channel and

interfacial Reynolds numbers ReH and Re are related to the dimensionless channel
height, permeability and pressure gradient by

ReH =
1

6

(
H

a

)3
a3(−dp/dx)

μν
, Re =

H
√

κ

a2

a3(−dp/dx)

μν
. (2.12)

3. Numerical method and validation
Our numerical simulations are carried out using the physalis method which is

described in detail in Takagi et al. (2003) and Zhang & Prosperetti (2003, 2005).
The method is based on the observation that, due to the no-slip condition, in
the immediate neighbourhood of each particle the Navier–Stokes equations can be
accurately approximated by the linearized Stokes equations whatever the Reynolds
number is. As the Reynolds number increases, the region where this approximation
is applicable shrinks, but is never zero. For bodies with a simple shape, such as
cylinders, the Stokes solution can be expressed in analytic form as a superposition
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Figure 1. Illustration of the flow studied in this paper. The model porous medium consists
of seven parallel cylinder rows in a square array, as here, or in a staggered configuration;
periodicity in the vertical direction is assumed.

of modes containing undetermined coefficients, which are calculated by matching
the local analytic solution with a finite-difference solution away from the particles.
The latter is calculated by a standard first-order projection method. Some of the
coefficients give the hydrodynamic force and couple on the bodies directly, avoiding
the need to integrate the fluid stress over the body surface. Furthermore, the no-slip
condition at the surface of the bodies is satisfied exactly. After some convergence tests,
we found that four modes were sufficient for a good resolution of the flow. On the
basis of earlier experience with this type of simulation, we used 16 cells per cylinder
diameter. This resolution is adequate because the thickness of the Stokes region can
be estimated to be of the order of a/

√
Re (Zhang & Prosperetti 2003). Thus, 16 nodes

per diameter are sufficient up to Re of order 50, which is well above the largest value
attained by the interfacial Reynolds number in the present calculations.

The flow situation we consider is shown in figure 1. The system is periodic in the
vertical direction with alternating layers of seven horizontal rows of cylinders and
layers of clear fluid. By imposing periodicity conditions in the direction x of the mean
flow, we can limit our consideration to a single vertical ‘slice’ of the flow containing a
vertical line of seven cylinders. As shown later, the decay of the flow away from the
surface of the porous medium is fast enough that this number is sufficient to simulate
an effectively infinitely deep medium.

To test the accuracy of the calculation we carried out several comparisons with
earlier work. Larson & Higdon (1987) simulated a simple-shear steady Stokes flow
over a model porous medium consisting of many rows of aligned cylinders under
a clear-fluid domain. The shear was generated by imposing a stress condition
on the top boundary of their computational domain. To describe the same
situation in our simulation, we replaced the periodicity conditions in the vertical
direction by an imposed velocity on the top horizontal boundary of the clear-fluid
domain and a zero velocity on a lower boundary placed close to the bottom
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Figure 2. Calculated streamlines in the region of the two top cylinder rows for shear-induced
flow at zero Reynolds number (square arrangement). This figure can be compared with
figure 11(c) of Larson & Higdon (1987).

row of cylinders. The results were insensitive to the precise position of this lower
boundary.

Figure 2 shows the streamlines in the region of the two top cylinder rows; the
solids volume (area) fraction is 10 %. Comparison with the same situation computed
by Larson & Higdon (1987) and shown in figure 11(c) of their paper is excellent.
Both studies show the clear presence of recirculating eddies, quite unlike the results
of James & Davis (2001) whose approximate method is evidently unable to deal with
this relatively high concentration.

For an infinite periodic porous medium, a momentum balance over the fundamental
cell relates the force F on the cylinder to the applied pressure gradient −dp/dx

according to

F =
1

n

(
−dp

dx

)
=

πa2

β

(
−dp

dx

)
, (3.1)

in which n is the cylinder number density and β = πa2n the solid volume (area)
fraction. For moderate Reynolds numbers, Koch & Ladd (1997) showed that

F

μU
= k0 + k2Re2

d, (3.2)

where U is the volume- (area-)averaged fluid velocity, Red = 2aρU/μ and k0, k2 are
functions of β; k0 is related to the permeability κ by

k0 =
πa2

βκ
(3.3)

and, for this quantity, Sangani & Acrivos (1982) showed that, for small β ,

k0 =
4π

ln(β−1/2) − 0.738 + β − 0.887β2 + 2.038β3 + O(β4)
(3.4)

while, for large β ,

k0 =
9π

2
√

2

(
1 −

√
4β

π

)−5/2

(3.5)
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β This work Sangani & Acrivos (1982)

15 % 36.21 36.16 Equation (17)
Square array 30 % 102.94 102.90 Numerical

45 % 327.04 343.21 Equation (18)

15 % 36.76 36.12 Equation (25)
Staggered array 30 % 96.90 96.79 Numerical

45 % 259.28 234.32 Equation (25)

Table 1. Values of k0 from this work compared to those of Sangani & Acrivos (1982).

with the quantity in parentheses the dimensionless thickness of the gap between
neighbouring cylinders. In addition to these asymptotic limits, Sangani & Acrivos
(1982) calculated the permeability of infinite cylinder arrays at zero Reynolds number.
Table 1 compares some of our results for k0 with those of Sangani & Acrivos. Since
they did not give results for β = 45 %, we were forced to use the approximate
expression (3.5) which, as their figure 2 shows, is not quite accurate for this value
of β . Nevertheless, the agreement between the two calculations is very good. To
obtain these results, we calculated the permeability by using fully periodic boundary
conditions on a fundamental cell containing only one body by the same procedure
used by Koch & Ladd (1997).

We can use the results of Koch & Ladd (1997) to further validate our computations.
To this end, we focus on the flow in the neighbourhood of the fourth row of cylinders.
We verified that conditions here are close to those prevailing inside an infinite porous
medium by comparing the velocity field and the drag force with the results obtained
for a truly infinite porous medium realized as described before. The two simulations
gave virtually identical results.

Figure 3 shows a graph of our computed dimensionless force (3.2) versus the mean
Reynolds number Red plotted as a function of Re2

d for β = 20 %. These results are
for an infinite porous medium and are to be compared with those shown in figure 1
of Koch & Ladd (1997). The values of k0 and k2 quoted by these authors are 51.19
and 0.065, to be compared with ours which are 51.545 and 0.065; Sangani & Acrivos
(1982) quote k0 = 51.53.

We define the average horizontal velocity at a depth y in the porous medium by

U (y) =
1

L

∫ L/2

−L/2

u(x, y) dx, (3.6)

where, for the square array, L is the distance between the centres of two adjacent
cylinders. To prove that our seven-cylinder thick layer is effectively equivalent to
an infinite porous medium, we show in figure 4 a comparison between this average
velocity in the region between the third and the fifth row of cylinders (symbols)
with the corresponding results for an infinite porous medium (lines) for different
dimensionless pressure gradients a3(−dp/dx)/(μν) = 0.24, 0.48, 0.96 and 1.44 in
ascending order, and for two channel widths, H/a = 13.7 and 17.1. The corresponding
channel Reynolds numbers for H/a = 13.7 are ReH = 52, 103, 205 and 308 while, for
H/a =17.1, ReH = 100, 200, 400 and 600.

A similar graph for the region between the planes where the centres of the first
and second cylinder rows are located is shown in figure 5. Only a slight asymmetry
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Figure 3. The force per unit length on a cylinder at different Reynolds numbers (circles) for
an infinite porous medium compared with the fit (3.2) (solid line) for an area fraction β = 20 %
(square arrangement). Our calculated k0 and k2 are 51.545 and 0.065, to be compared with the
values of Koch & Ladd (1997), which are 51.19 and 0.065.
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Figure 4. Comparison between the averaged velocity (3.6) inside an infinite porous medium
(lines) and that in the region between the third and fifth rows of cylinders for two
channels heights (symbols). The dimensionless pressure gradients are, in ascending order,
a3(−dp/dx)/(μν) = 0.24, 0.48, 0.96 and 1.44. The area fraction is β = 30 % and the bodies are
in the square arrangement; the y origin is set at the centreline of the fourth cylinder row.
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Figure 5. Comparison between the averaged velocity (3.6) inside an infinite porous medium
(lines) and that in the region between the first and second row of cylinders for two
channels heights (symbols). The dimensionless pressure gradients are, in ascending order,
a3(−dp/dx)/(μν) = 0.24, 0.48, 0.96 and 1.44. The area fraction is β = 30 % and the bodies are
in the square arrangement; the y origin is set on the mid-plane between the first and second
cylinder row; y/L = 3 is the centre plane of the first cylinder row.

near the centre plane of the first row of cylinders is visible in the right corner
of the figure, as put into evidence by the fact that, here, the points are slightly
below the lines (which give the results for an infinite porous medium). This is the
region where the recirculating eddies described later are mostly localized. In Sahraoui
& Kaviany’s work (Sahraoui & Kaviany 1992) an infinite-porous medium velocity
boundary condition was imposed at the midplane between the first and the second
cylinder row, i.e. y/L =2.5 in this figure. While, on the basis of this figure, this may
be a reasonable approximation, it might affect the small eddies, which are not shown
in their paper.

4. Results
We now show typical results of the computations, starting with the flow field,

turning then to the question of the slip at the interface and concluding with the force
and couple on the particles. Most of the results are for the square array, but some
examples for the staggered array will also be shown.

4.1. Flow fields

Figure 6 shows the streamlines in the region occupied by the upper four cylinder rows
for β = 15 % and different Reynolds numbers for the square array. In the upper row
of bodies, for zero Reynolds number, the flow pattern is very similar to that shown
in figure 7(a) of Pozrikidis (2001) for the flow over a single layer of cylinders in an
infinite fluid. In his case, the flow under the cylinder layer was driven exclusively by
the shear imposed above it, while in ours there is also a weak flow due to the imposed
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(a) (b) (c) (d) (e)

Figure 6. Streamlines for square arrays with cylinder area fraction β = 15 % and channel
width H/a = 13.7 at different Reynolds numbers: (a) Re =0, ReH = 0; (b) Re = 5.00,
ReH = 103; (c) Re = 10.0 , ReH = 205; (d) Re =15.0 , ReH = 308; and (e) Re = 20.4,
ReH = 420.

pressure gradient. Since the velocity of this flow is small, its effect on the qualitative
appearance of the streamlines is negligible. Pozrikidis himself noticed the similarity
with the flow over a slit opened in a no-slip plane studied by Smith (1987).

A characteristic feature of the flow is the presence of a stagnation streamline
connecting two horizontally adjacent cylinders in the topmost row. As Re increases,
so does the horizontal velocity under this stagnation streamline, which forces more
fluid to ascend and descend in the gap between the cylinders. These counter-directed
streams in a narrow space give rise to an increasingly large dissipation which is
eventually reduced by the formation of a slow recirculating eddy and the appearance
of a second stagnation streamline connecting the lower sides of the cylinders. This
process is not quite completed at the maximum Reynolds number shown in figure 6
and will be more evident in the examples shown later.

Inertia effects start being visible especially in the last two panels with the
displacement of the flow pattern in the flow direction. A comparison between the
streamlines under the second and third cylinder layers reveals negligible differences,
which indicates that the flow in this region is already essentially the same as in an
infinite porous medium.

Similar simulations for a narrower channel (smaller H ), but the same interfacial
Reynolds number Re defined in (2.9), show a less pronounced tendency to the
‘pinching’ of the streamlines and a delayed appearance of the recirculating eddy.
These results can be explained from (2.8): constant Re means constant U∗ and, if H is
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(a) (b) (c) (d )

Figure 7. Streamlines for square arrays with cylinder area fraction β = 45 % and
channel width H/a = 13.7 at different Reynolds numbers: (a) Re = 0 , ReH = 0; (b)
Re = 0.961 , ReH = 103; (c) Re =1.92 , ReH = 205; and (d) Re = 3.93 , ReH = 420.

decreased, so is Um. The slower flow in the channel (due to the greater flow resistance
caused by the smaller height) causes a correspondingly weaker velocity above the
stagnation streamline.

Figure 7 shows similar plots for β =45 %, except that only the region above the
centre plane of the second row of cylinders is shown as the flow deeper in the porous
medium is very similar to the one shown in figure 6. Now a stagnation streamline on
the lower side of the cylinders is present already at Re = 0, as are other stagnation
and closed streamlines in the gap. The general appearance is reminiscent of the
slow flow in a lid-driven cavity (see e.g. Shen & Floryan 1985; Hou et al. 1995;
Patil, Lakshmisha & Rogg 2006) with the role of the lid played by the stagnation
streamlines connecting the adjacent cylinders.

Two examples of the same flow in a wider channel (H/a = 17.09 in place of 13.69)
are shown in figures 8(a) and 8(b). The interface velocity is larger here due to the
increased channel width and the flow pattern in the gap fragments even further.

Figures 8(c) and 8(d ) represent the streamlines for an intermediate volume fraction
case, β = 30 %. The narrower inter-cylinder gap in comparison with the β = 15 % case
of figure 6 causes an earlier ‘pinching’ of the flow with a consequent appearance of a
recirculating eddy.

Figure 9 shows examples of the flow for a staggered cylinder arrangement for
volume fraction of 15 % (figure 9a,b) and 45 %. Qualitatively, the features of the flow
are very similar to the ones seen in the previous examples.

Figure 10 shows examples of the pressure field. Darkness of the grey scale decreases
with increasing magnitude of the dimensionless pressure (p−p)/a(−dp/dx), in which
p is the mean pressure over the entire flow field. Figures 10(a) and 10(b) are for
the square array and figures 10(c) and 10(d ) for the staggered array at two area
fractions. Figures 10(a) and 10(b) are for area fractions of 15 %. It is seen that, in all
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(a) (b) (c) (d)

Figure 8. Streamlines for square arrays with cylinder area fraction β = 45 % (a) and
(b) and 30 % (c) and (d ) and channel width H/a =17.1 at different Reynolds
numbers: (a) Re = 0 , ReH = 0; (b) Re = 2.40 , ReH = 400; (c) Re = 0 , ReH = 0; and (d)
Re = 5.23 , ReH =400.

(a) (b) (c) (d)

Figure 9. Streamlines for staggered arrays with cylinder area fraction 15 % (a) and (b)
and β = 45 % (c) and (d ) and channel width H/a = 13.7 at different Reynolds numbers:
(a) Re = 4.96 , ReH =103; (b) Re = 9.92 , ReH = 205; (c) Re =1.08 , ReH = 103; and (d)
Re = 3.24 , ReH = 308.
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Figure 10. Pressure distribution in the region of the top two cylinder rows for the square
(a) and (b) and staggered arrangements; (a) and (c) are for an area fraction of 15 % with
ReH = 205 and (b) and (d ) for 45 % and ReH = 308. The interfacial Reynolds numbers, from
(a) to (d ), are Re = 10.0, 2.88, 9.92, 3.24, respectively. The channel height is H/a =13.7. Degree
of darkness decreases with increasing magnitude.

cases, a marked pressure maximum forms near the attachment point of the stagnation
streamline on the lee cylinder, and a pressure minimum near the separation point on
the upstream cylinder. This feature has a significant effect on the lift force as will be
seen later.

Between the bodies, for the square array, the iso-pressure lines are approximately
perpendicular to the flow, but less so for the staggered array, which is responsible for
the less symmetric eddies in the latter as compared to the former (cf. figures 7 and 9).

4.2. Effective slip

For the reasons explained by Sahraoui & Kaviany (1992) and James & Davis (2001),
the interface is chosen to be the tangent plane to the cylinders facing the open
channel. We define the interface velocity Ui , introduced in (1.1) of § 1, as the mean
velocity (3.6) evaluated on this plane.

Figure 11 shows a typical profile of U (y) defined in (3.6) (solid line) and compares it
with a parabolic Poiseuille velocity distribution with the calculated Ui at y = 0 (dotted
line) for β = 15 % and ReH = 308. The two results are nearly indistinguishable, which
implies that the mean shear rate at the interface is well estimated by (2.5).

The non-dimensional quantity Ui/U∗ = λ/
√

κ is referred to as dimensionless slip
velocity by James & Davis (2001) and Tachie et al. (2003). Graphs of Ui/U∗ for
Re =0 and β = 15 %, 30 % and 45 % are shown in figure 12 as a function of the
normalized inverse channel width a/H ; the lines are quadratic fits to the calculated
points and the corresponding numerical values are given in table 2. We use these fits
to extrapolate the results to an infinite channel width, a/H → 0, which, according to
the considerations of James & Davis (2001), should permit one to calculate the slip
coefficient α corresponding to linear shear flow. If, as these authors argue, α was the
same for pressure-driven and shear-driven flow, for which UD =0, one would have
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Figure 11. Dimensionless averaged velocity aU/ν in the channel for cylinder area fraction
β =15% , H/a =13.7 , ReH = 308 (square array). The solid line is the numerical result and the
dotted line is the analytical Poiseuille solution satisfying U = Ui at y = 0, with the numerically
computed Ui; the dimensionless value for this quantity is aUi/ν = 2.19.
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Figure 12. Dimensionless interfacial velocity for zero Reynolds number and different
channel heights. The curves are quadratic fits.

from (2.2)

1

α
=

(
Ui

U∗

)
shear

=

(
Ui

U∗

)
press .

− UD

U∗
=

(
Ui

U∗

)
press .

− 2
√

κ

H
(4.1)

where (2.7) has been used in the last step. For β = 10 % and 16 % Tachie et al.
(2003) measured a value 0.235 for shear-driven flow, which is close to the values
0.230–0.239 reported by James & Davis (2001) for β = 10 %. For β = 15 % and the
widest channel we have simulated, H/a = 23.9, our numerical result for the first term
in the right-hand side is 0.349 while the last term has the value UD/U∗ = 0.064, with a
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β

a/H H/a 15% 30% 45%

0 ∞ 0.3422 0.5057 0.8418
0.0419 23.87 0.3488 0.5202 0.8578
0.0585 17.1 0.3532 0.5251 0.8667
0.0730 13.7 0.3612 0.5448 0.8869

Table 2. Values of dimensionless slip velocity Ui/U∗ defined in (4.2) for Re = 0.
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Figure 13. Dimensionless interfacial velocity as a function of the interfacial Reynolds number
(2.9) for β = 15 %, 30 % and 45 % in ascending order. (b) An enlargement of the small-Re
data of (a) plotted as function of Re2, rather than Re, as suggested by (4.7).

net result 1/α = 0.285. Since, on the basis of the comparisons in § 3, our results appear
to be accurate, this difference must be attributed to a small, but non-zero intrinsic
difference between the slip features of pressure-driven and shear-driven flows. Thus,
it appears that the Beavers–Joseph condition (1.1) is not universal, in the sense that
the slip coefficient depends somewhat on the type of flow.

As found by Sahraoui & Kaviany (1992) for Re = 0.1 (see their figure 5a), increasing
the channel width decreases the interface velocity which, once again, can be understood
on the basis of (2.8): a wider channel offers less resistance to the flow, which decreases
the fraction of fluid forced to flow in the porous medium and, with it, the interface
velocity. This trend is also consistent with the results shown in figures 8 and 9 of
James & Davis (2001).

Results for Ui/U∗ = λ/
√

κ at non-zero Reynolds number are shown for two channel
widths in figure 13(a), with a detail for small Re in figure 13(b). At the larger channel
Reynolds numbers, a boundary layer tends to form near the exposed solid surfaces
which becomes more and more difficult to resolve with our grid. Hence we only
present results up to a channel Reynolds number ReH = 420. For the same channel
Reynolds number, the interface Reynolds number decreases with increasing volume
fraction due to the decrease of κ , which explains the unequal termination of the
ranges of Re covered for different values of β . In general, we observe that the
interface velocity first decreases and then apparently stabilizes with increasing Re.
This latter feature may be due to the fact that the separation point on the lee side of
the cylinder tends to an asymptotic position.
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For a given geometry of the cylinder array, simple dimensional considerations show
that one must have a relation of the form

Ui

U∗
=

λ√
κ

= f1(β, Re, a/H ) → f (β, Re) as a/H → 0, (4.2)

where Re is the Reynolds number near the interface defined in (2.9). The nature of
this Reynolds-number dependence at small Re may be inferred from the following
argument (see Koch & Ladd 1997). After non-dimensionalizing lengths by 2a, the
velocity by U∗ and the pressure gradient by μU∗/4a2, the Navier–Stokes equations
can be written as

∇ · u = 0, −∇p + ∇2u +
8a2

H
√

κ
ex = Reu · ∇u . (4.3)

Here the dimensionless imposed pressure gradient in the x direction has been
written explicitly as 8a2/(H

√
κ)ex . Upon expanding velocity and pressure in a regular

perturbation series in Re

u = u0 +Reu1 +Re2u2 + · · · , ∇p =
8a2

H
√

κ
ex +∇p0 +Re∇p1 +Re2∇p2 + · · · (4.4)

the leading-order velocity and pressure fields are found to satisfy the homogeneous
Stokes equations while the higher-order fields contain inertial effects that depend on
the lower-order fields:

−∇p1 + ∇2u1 = u0 · ∇u0 , (4.5)

−∇p2 + ∇2u2 = u0 · ∇u1 + u1 · ∇u0. (4.6)

Since the Stokes equation is linear and the boundary conditions are periodic in x, the
velocity field u0 is an even function of x. Thus, the right-hand side of (4.5) is odd in
x and so is u1, which therefore makes no contribution to U (y) defined in (3.6). For
this reason, the O(Re) contribution to the interface velocity vanishes and we find, at
small Reynolds numbers,

λ√
κ

= λ0(β) + λ2(β)Re2. (4.7)

This quadratic dependence is in agreement with the numerical result shown in
figure 13(b) where the computed dimensionless slip velocity is plotted as a function
of Re2.

4.3. Force and torque on the outermost layer of cylinders

We now consider the hydrodynamic force, defined as

F =

∫
S

σ · n dS − πa2

(
−dp

dx
ex

)
(4.8)

acting on the outermost cylinder layer. Here σ is the total fluid stress (i.e. pressure
plus viscous) on the cylinder surface S and n is the outward unit normal. The second
term πa2(−dp/dx) represents the ‘effective buoyancy force’ due to the applied pressure
gradient and subtracting it from the total calculated force permits us to focus on the
effect of the local flow around the bodies.

Figure 14 shows the horizontal (x-)component of F, i.e. the drag force Fx , scaled
by F∗ defined in (2.10), which is proportional to the interfacial Reynolds number
Re. The open and closed symbols are for H/a =17.1 and 13.7, respectively, and the
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Figure 14. Non-dimensional drag force per unit length on the cylinders in the top layer with
G = − dp/dx. The open and closed symbols are for H/a = 17.1 and 13.7, respectively, and
the asterisks are for the staggered array with H/a = 13.7. Circles are for β = 15 %, squares for
β = 30 % and triangles for β = 45 %.

asterisks are for the staggered array with H/a =13.7. Circles are for β = 15 %, squares
for β = 30 % and triangles for β = 45 %. Continuing the parity considerations made
above, it is easy to show that the O(Re) contribution to Fx vanishes leaving only an
O(Re)2 effect which is slightly negative, as evidenced by the slight downward bending
of the data, and very small. The scaling by F∗ removes part of the dependence on
the channel width, but the difference between open and closed symbols indicates the
presence of some residual dependence on the parameter a/H which, while small, does
not appear to be quite negligible. The strongest dependence is on the volume fraction
β to which Fx is seen to be approximately inversely proportional as suggested by
(3.1).

Of greater interest is the lift force Fy , shown in figure 15 normalized by F∗; this
force must vanish for Re = 0 due to the reversibility of inertia-less flow. Now the
parity argument shows that Fy derives from the O(Re) terms in the expansion (4.4)
and is seen to grow rapidly with the interfacial Reynolds number Re until it appears
to saturate at higher Re. The results exhibit very little sensitivity to volume fraction,
channel height or array geometry, mostly depending on the Reynolds number. The
saturation at the higher end of this variable (which implies a proportionality to the
pressure gradient G by which Fy is scaled) is due to the fact that the flow pattern (e.g.
the position of streamlines and stagnation points) tends to stabilize as Re increases.
After this happens, since the spatial distribution of pressure and stress does not
change any more, the force becomes only dependent on the levels of these quantities
which, in a channel flow, are both proportional to the pressure gradient G.

We can get some insight into the mechanism causing this lift force by looking at
the pressure and viscous stress distributions over the particle surface. Figures 16(a)
and 17(a) are polar plots of the dimensionless pressure (p − p̃)/a(−dp/dx) and
viscous stress (τ · n)/a(−dp/dx) around the topmost cylinders in the square array
arrangement for 15 % and 45 %; p̃ is the surface average pressure and n the outward
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Figure 15. Non-dimensional lift force per unit length on the cylinders in the top layer with
G = − dp/dx. The open and closed symbols are for H/a = 17.1 and 13.7, respectively, and
the asterisks are for the staggered array with H/a = 13.7. Circles are for β = 15 %, squares for
β =30 % and triangles for β =45%.

(a) (b)

Figure 16. (a) The dimensionless pressure distribution over the surface of the topmost
cylinders. The solid and dashed lines in (b) are the horizontal and vertical components
of the viscous stress. The radius of the dashed circle is 30; the volume fraction is 15 %,
the channel Reynolds number ReH = 420, the interfacial Reynolds number Re = 20.4 and the
channel width H/a =13.7.

unit normal. The normal component of τ · n vanishes by continuity and therefore
both the x- and y-components vanish at the stagnation points mentioned earlier in
connection with figure 10. The position of the pressure maxima and minima seen
earlier in figure 10 clearly corresponds to these points. Even though the high-pressure
region above the centre plane is comparable to the low pressure one, the latter is
more concentrated towards the upper surface of the body, while the centre of the
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(a) (b)

Figure 17. (a) The dimensionless pressure distribution over the surface of the topmost
cylinder. The solid and dashed lines in (b) are the horizontal and vertical components of
the viscous stress. The radius of the dashed circle is 30; the volume fraction is 45 %, the
channel Reynolds number ReH = 308, the interfacial Reynolds number Re = 3.24 and the
channel height H/a = 13.7.
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Figure 18. Non-dimensional couple per unit length on the cylinders in the top layer with
G = − dp/dx. The open and closed symbols are for H/a = 17.1 and 13.7, respectively, and
the asterisks are for the staggered array with H/a = 13.7. Circles are for β = 15 %, squares for
β = 30 % and triangles for β = 45 %.

high pressure is displaced downward. The net result is therefore a ‘suction’ force away
from the porous bed, aided by an upward pressure force on the underside of the
particle (much decreased for β = 45 %). The figures show that the pressure effect is
aided by the vertical component of the viscous stress (dashed lines).

Finally, figure 18 is the couple per unit length on the top cylinders normalized by
L∗ defined in (2.10). With this normalization the couple is approximately independent
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of the interfacial Reynolds number up to Re ∼ 1 (indicating that L ∝ −dp/dx), and
then slowly starts to decrease as the asymmetry between the tractions on the upper
and lower sides of the cylinder, which is responsible for the couple, starts to decrease.

5. Conclusions
We have presented a numerical study of the two-dimensional flow past a regular

array of cylinders partially obstructing a fluid flow as sketched in figure 1. Unlike
most of the earlier studies, we have focused on the effects of fluid inertia on the
various quantities which characterize the flow in the immediate vicinity of the porous
medium interface: slip velocity, slip length and slip coefficient.

The most interesting conclusion of this work is the appearance of a lift force on the
bodies at the surface of the porous medium only weakly dependent on the volume
fraction and geometry of the array. This force vanishes at zero Reynolds number and
increases nearly proportionally to it until it saturates at an approximately constant
value for an interfacial Reynolds number greater than about 20. In this range the lift
force per unit cylinder length is approximately

Fy � 2aτw (5.1)

in which τw is of the order of the average shear stress at the surface of the porous
medium. Our calculation of the drag force in the direction of the flow (figure 14) gives
a somewhat larger result but of the same order. The couple per unit length acting on
the topmost cylinder layer is about

T � 2a2τw. (5.2)

The numerical results for the square and staggered arrays are very close, which
suggests a relative insensitivity to the detailed spatial arrangement of the bodies.
This observation suggests that our results might hold with a reasonable quantitative
accuracy also for random arrangements.

In the literature on sediment transport it is customary to make use of the so-called
Shields number (see e.g. Ouriemi et al. 2007)

Sh =
τw

(ρp − ρ)ga
(5.3)

in which ρp and ρ are the particle and fluid density and g the acceleration of
gravity. A critical value Sh ∼ 0.1 is commonly used to characterize incipient sediment
mobility. In principle one could imagine replacing τw by a combination of drag, lift
and hydrodynamic couple which act in a direction favourable towards displacing
the particle upward. Our results show that, numerically, this combination would be
several times τw , so that the condition for incipient mobility would move closer to
the weight of the particles as one would expect. The lift force may also play a role
in destabilizing particle layers dominated by horizontal force chains. Clearly, these
matters need to be investigated further with more realistic sediment models.

This study was supported by National Science Foundation under grants CBET-
0625138 and CBET-0754344.
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